

HEATSEAL 29

Principais características

A sua dilatação reduzida à medida que a temperatura aumenta torna-o um arame de elemento de aquecimento ideal para termosselagem (selagem de sacos plásticos) ao longo de um comprimento reto.

IMPORTANTE

Fabricamos mediante os seus requisitos de propriedades mecânicas

principais vantagens para si, o nosso cliente

0,025 mm a 21 mm (0,001" a 0,827")

Encomendar 3 m a 3 t (10 ft a 6000 Lbs)

Entrega: dentro de 3 semanas

Arame à medida da sua especificação

Disponível serviço de correio expresso (EMS)

Apoio técnico

HEATSEAL 29 disponível em:-

- Arame redondo
- Barras ou comprimentos
- Arame plano
- Arame moldado
- Corda/cordão

Embalagem

- Bobinas
- Rolos
- Barras ou comprimentos

HEATSEAL 29

Composição química			Designações	Principais características	Aplicações típicas	
Elemento	Min %	Max %	AWS 094	A sua dilatação reduzida à medida que a	Termosselagem (selagem	
Fe	Fe 53.00 nominal			temperatura aumenta torna-o um arame de elemento de aquecimento ideal para termosselagem (selagem de sacos plásticos) ao longo de um comprimento reto.	de sacos plásticos) de comprimentos longos de	
Ni	Ni 29.00 nominal				sacos plásticos em que a reduzida expansão do arame é importante para assegurar a	
Со	Co 17.00 nominal					
Mn	-	0.50			retilinearidade da selagem.	
Si	-	0.20			Por exemplo, na	
С	-	0.04			termosselagem de sacos plásticos para colchões de	
Al	-	0.10			cama.	
Mg	-	0.10				
Zr	-	0.10				
Ti	-	0.10				
Cu	-	0.20				
Cr	-	0.20				
Мо	-	0.20				

Densidade	8.16 g/cm ³	0.295 lb/in ³	
Ponto de fusão	1450 ℃	2640 °F	
Ponto de inflexão	450 °C	840 °F	
Condutividade térmica	16.7 W/m• °C	116 btu•in/ft²•h °F	
Coeficiente de expansão	6.0 μm/m °C (20 – 100 °C) 4.6 – 5.2 μm/m °C (20 – 400 °C)	3.3 x 10 ⁻⁶ in/in °F (70 – 212 °F) 2.6 – 2.9 x 10 ⁻⁶ in/in °F (70 – 752 °F)	

Tratamento térmico de peças acabadas

A liga é geralmente fornecida e utilizada no estado recozido (o trabalho a frio residual distorce os coeficientes da expansão térmica). Os tempos de recozimento podem variar devido à espessura da secção. O tempo de oxidação e a temperatura a selecionar dependem da espessura do óxido necessária.

	Tipo	Temperatura		Tomana (III)	Arrefecimento
		°C	°F	Tempo (Hr)	Arrelecimento
	Recozimento	850 – 1000	1560 – 1830	0.5	Ar or agua
Preparação para vedação vidro-metal	Descarbonização	900 – 1050	1650 – 1920	1	Ar or agua
Mediante a necessidade de uma interface de óxido metálico (o tempo e a temperatura dependem da espessura do óxido necessária)	Oxidação	600 – 1000	1110 – 1830	1	Ar

Propriedades							
Fetado	Força tênsil aprox.		Temperatura de funcionamento aprox.				
Estado	N/mm²	ksi	°C	°F			
Recozido	450 – 550	65 – 80	up to +400	up to +750			
Bem desenhado	700 – 900	102 – 131	up to +400	up to +750			

As gamas de força tênsil acima são os valores típicos. Se precisar de valores diferentes, por favor, solicite-os.